Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 12(1): 43, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500201

RESUMO

Intracerebral aneurysms (IAs) are pathological dilatations of cerebral arteries whose rupture leads to subarachnoid hemorrhage, a significant cause of disability and death. Inflammation is recognized as a critical contributor to the formation, growth, and rupture of IAs; however, its precise actors have not yet been fully elucidated. Here, we report CNS-associated macrophages (CAMs), also known as border-associated macrophages, as one of the key players in IA pathogenesis, acting as critical mediators of inflammatory processes related to IA ruptures. Using a new mouse model of middle cerebral artery (MCA) aneurysms we show that CAMs accumulate in the IA walls. This finding was confirmed in a human MCA aneurysm obtained after surgical clipping, together with other pathological characteristics found in the experimental model including morphological changes and inflammatory cell infiltration. In addition, in vivo longitudinal molecular MRI studies revealed vascular inflammation strongly associated with the aneurysm area, i.e., high expression of VCAM-1 and P-selectin adhesion molecules, which precedes and predicts the bleeding extent in the case of IA rupture. Specific CAM depletion by intracerebroventricular injection of clodronate liposomes prior to IA induction reduced IA formation and rupture rate. Moreover, the absence of CAMs ameliorated the outcome severity of IA ruptures resulting in smaller hemorrhages, accompanied by reduced neutrophil infiltration. Our data shed light on the unexplored role of CAMs as main actors orchestrating the progression of IAs towards a rupture-prone state.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Camundongos , Animais , Humanos , Aneurisma Intracraniano/etiologia , Aneurisma Intracraniano/metabolismo , Aneurisma Intracraniano/patologia , Inflamação/patologia , Sistema Nervoso Central/metabolismo , Fatores de Risco , Macrófagos/metabolismo , Aneurisma Roto/complicações , Aneurisma Roto/metabolismo , Aneurisma Roto/patologia
2.
Stroke ; 55(3): 747-756, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38288607

RESUMO

BACKGROUND: Intravenous injection of alteplase, a recombinant tPA (tissue-type plasminogen activator) as a thrombolytic agent has revolutionized ischemic stroke management. However, tPA is a more complex enzyme than expected, being for instance able to promote thrombolysis, but at the same time, also able to influence neuronal survival and to affect the integrity of the blood-brain barrier. Accordingly, the respective impact of endogenous tPA expressed/present in the brain parenchyma versus in the circulation during stroke remains debated. METHODS: To address this issue, we used mice with constitutive deletion of tPA (tPANull [tPA-deficient mice]) or conditional deletion of endothelial tPA (VECad [vascular endothelial-Cadherin-Cre-recombinase]-Cre∆tPA). We also developed parabioses between tPANull and wild-type mice (tPAWT), anticipating that a tPAWT donor would restore levels of tPA to normal ones, in the circulation but not in the brain parenchyma of a tPANull recipient. Stroke outcomes were investigated by magnetic resonance imaging in a thrombo-embolic or a thrombotic stroke model, induced by local thrombin injection or FeCl3 application on the endothelium, respectively. RESULTS: First, our data show that endothelial tPA, released into the circulation after stroke onset, plays an overall beneficial role following thrombo-embolic stroke. Accordingly, after 24 hours, tPANull/tPANull parabionts displayed less spontaneous recanalization and reperfusion and larger infarcts compared with tPAWT/tPAWT littermates. However, when associated to tPAWT littermates, tPANull mice had similar perfusion deficits, but less severe brain infarcts. In the thrombotic stroke model, homo- and hetero-typic parabionts did not differ in the extent of brain damages and did not differentially recanalize and reperfuse. CONCLUSIONS: Together, our data reveal that during thromboembolic stroke, endogenous circulating tPA from endothelial cells sustains a spontaneous recanalization and reperfusion of the tissue, thus, limiting the extension of ischemic lesions. In this context, the impact of endogenous parenchymal tPA is limited.


Assuntos
Acidente Vascular Cerebral , AVC Trombótico , Animais , Camundongos , Modelos Animais de Doenças , Células Endoteliais , Endotélio , Camundongos Knockout , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tecidual/metabolismo
3.
Blood Adv ; 8(5): 1330-1344, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38190586

RESUMO

ABSTRACT: The pharmacological intervention for ischemic stroke hinges on intravenous administration of the recombinant tissue-type plasminogen activator (rtPA, Alteplase/Actilyse) either as a standalone treatment or in conjunction with thrombectomy. However, despite its clinical significance, broader use of rtPA is constrained because of the risk of hemorrhagic transformations (HTs). Furthermore, the presence of diabetes or chronic hyperglycemia is associated with an elevated risk of HT subsequent to thrombolysis. This detrimental impact of tPA on the neurovascular unit in patients with hyperglycemia has been ascribed to its capacity to induce endothelial N-methyl-D-aspartate receptor (NMDAR) signaling, contributing to compromised blood-brain barrier integrity and neuroinflammatory processes. In a mouse model of thromboembolic stroke with chronic hyperglycemia, we assessed the effectiveness of rtPA and N-acetylcysteine (NAC) as thrombolytic agents. We also tested the effect of blocking tPA/NMDAR signaling using a monoclonal antibody, Glunomab. Magnetic resonance imaging, speckle contrast imaging, flow cytometry, and behavioral tasks were used to evaluate stroke outcomes. In hyperglycemic animals, treatment with rtPA resulted in lower recanalization rates and increased HTs. Conversely, NAC treatment reduced lesion sizes while mitigating HTs. After a single administration, either in standalone or combined with rtPA-induced thrombolysis, Glunomab reduced brain lesion volumes, HTs, and neuroinflammation after stroke, translating into improved neurological outcomes. Additionally, we demonstrated the therapeutic efficacy of Glunomab in combination with NAC or as a standalone strategy in chronic hyperglycemic animals. Counteracting tPA-dependent endothelial NMDAR signaling limits ischemic damages induced by both endogenous and exogenous tPA, including HTs and inflammatory processes after ischemic stroke in hyperglycemic animals.


Assuntos
Hiperglicemia , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Humanos , Ativador de Plasminogênio Tecidual/farmacologia , Ativador de Plasminogênio Tecidual/uso terapêutico , Camundongos Obesos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/etiologia , Hemorragia , Inflamação/tratamento farmacológico , AVC Isquêmico/complicações , AVC Isquêmico/tratamento farmacológico , Hiperglicemia/complicações , Hiperglicemia/tratamento farmacológico
4.
Anesth Analg ; 136(2): 240-250, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638508

RESUMO

BACKGROUND: One in 7 children will need general anesthesia (GA) before the age of 3. Brain toxicity of anesthetics is controversial. Our objective was to clarify whether exposure of GA to the developing brain could lead to lasting behavioral and structural brain changes. METHODS: A first study was performed in mice. The behaviors (fear conditioning, Y-maze, and actimetry) and brain anatomy (high-resolution magnetic resonance imaging) of 6- to 8-week-old Swiss mice exposed or not exposed to GA from 4 to 10 days old were evaluated. A second study was a complementary analysis from the preexisting APprentissages EXécutifs et cerveau chez les enfants d'âge scolaire (APEX) cohort to assess the replicability of our data in humans. The behaviors (behavior rating inventory of executive function, emotional control, and working memory score, Backward Digit Span, and Raven 36) and brain anatomy (high-resolution magnetic resonance imaging) were compared in 102 children 9 to 10 years of age exposed or not exposed to a single GA (surgery) during infancy. RESULTS: The animal study revealed chronic exacerbated fear behavior in the adult mice (95% confidence interval [CI], 4-80; P = .03) exposed to postnatal GA; this was associated with an 11% (95% CI, 7.5-14.5) reduction of the periaqueductal gray matter (P = .046). The study in humans suggested lower emotional control (95% CI, 0.33-9.10; P = .06) and a 6.1% (95% CI, 4.3-7.8) reduction in the posterior part of the right inferior frontal gyrus (P = .019) in the children who had been exposed to a single GA procedure. CONCLUSIONS: The preclinical and clinical findings of these independent studies suggest lasting effects of early life exposure to anesthetics on later emotional control behaviors and brain structures.


Assuntos
Anestésicos , Encéfalo , Humanos , Criança , Adulto , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Anestesia Geral/efeitos adversos , Imageamento por Ressonância Magnética/métodos , Memória de Curto Prazo
5.
J Cereb Blood Flow Metab ; 42(12): 2216-2229, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35945692

RESUMO

Despite an apparently silent imaging, some patients with mild traumatic brain injury (TBI) experience cognitive dysfunctions, which may persist chronically. Brain changes responsible for these dysfunctions are unclear and commonly overlooked. It is thus crucial to increase our understanding of the mechanisms linking the initial event to the functional deficits, and to provide objective evidence of brain tissue alterations underpinning these deficits. We first set up a murine model of closed-head controlled cortical impact, which provoked persistent cognitive and sensorimotor deficits, despite no evidence of brain contusion or bleeding on MRI, thus recapitulating features of mild TBI. Molecular MRI for P-selectin, a key adhesion molecule, detected no sign of cerebrovascular inflammation after mild TBI, as confirmed by immunostainings. By contrast, in vivo PET imaging with the TSPO ligand [18F]DPA-714 demonstrated persisting signs of neuroinflammation in the ipsilateral cortex and hippocampus after mild TBI. Interestingly, immunohistochemical analyses confirmed these spatio-temporal profiles, showing a robust parenchymal astrogliosis and microgliosis, at least up to 3 weeks post-injury in both the cortex and hippocampus. In conclusion, we show that even one single mild TBI induces long-term behavioural deficits, associated with a persistent neuro-inflammatory status that can be detected by PET imaging.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Animais , Humanos , Camundongos , Encéfalo , Concussão Encefálica/complicações , Concussão Encefálica/diagnóstico por imagem , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Doenças Neuroinflamatórias , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA
6.
J Thromb Haemost ; 19(9): 2235-2247, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34060720

RESUMO

BACKGROUND: Factor XII (FXII) is a serine protease that participates in the intrinsic coagulation pathway. Several studies have shown that plasma FXII exerts a deleterious role in cerebral ischemia and traumatic brain injury by promoting thrombo-inflammation. Nevertheless, the impact of FXII on neuronal cell fate remains unknown. OBJECTIVES: We investigated the role of FXII and FXIIa in neuronal injury and apoptotic cell death. METHODS: We tested the neuroprotective roles of FXII and FXIIa in an experimental model of neuronal injury induced by stereotaxic intracerebral injection of N-methyl-D-aspartic acid (NMDA) in vivo and in a model of apoptotic death of murine primary neuronal cultures through serum deprivation in vitro. RESULTS: Here, we found that exogenous FXII and FXIIa reduce brain lesions induced by NMDA injection in vivo. Furthermore, FXII protects cultured neurons from apoptosis through a growth factor--like effect. This mechanism was triggered by direct interaction with epidermal growth factor (EGF) receptor and subsequent activation of this receptor. Interestingly, the "proteolytically" active and two-chain form of FXII, FXIIa, exerts its protective effects by an alternative signaling pathway. FXIIa activates the pro-form of hepatocyte growth factor (HGF) into HGF, which in turn activated the HGF receptor (HGFR) pathway. CONCLUSION: This study describes two novel mechanisms of action of FXII and identifies neurons as target cells for the protective effects of single and two-chain forms of FXII. Therefore, inhibition of FXII in neurological disorders may have deleterious effects by preventing its beneficial effects on neuronal survival.


Assuntos
Fator XII , Proteínas Proto-Oncogênicas c-met , Animais , Apoptose , Coagulação Sanguínea , Fator XIIa , Camundongos , Neurônios
7.
Brain Behav Immun ; 91: 649-667, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017613

RESUMO

For the last two decades, researchers have placed hopes in a new era in which a combination of reperfusion and neuroprotection would revolutionize the treatment of stroke. Nevertheless, despite the thousands of papers available in the literature showing positive results in preclinical stroke models, randomized clinical trials have failed to show efficacy. It seems clear now that the existing data obtained in preclinical research have depicted an incomplete picture of stroke pathophysiology. In order to ameliorate bench-to-bed translation, in this review we first describe the main actors on stroke inflammatory and immune responses based on the available preclinical data, highlighting the fact that the link between leukocyte infiltration, lesion volume and neurological outcome remains unclear. We then describe what is known on neuroinflammation and immune responses in stroke patients, and summarize the results of the clinical trials on immunomodulatory drugs. In order to understand the gap between clinical trials and preclinical results on stroke, we discuss in detail the experimental results that served as the basis for the summarized clinical trials on immunomodulatory drugs, focusing on (i) experimental stroke models, (ii) the timing and selection of outcome measuring, (iii) alternative entry routes for leukocytes into the ischemic region, and (iv) factors affecting stroke outcome such as gender differences, ageing, comorbidities like hypertension and diabetes, obesity, tobacco, alcohol consumption and previous infections like Covid-19. We can do better for stroke treatment, especially when targeting inflammation following stroke. We need to re-think the design of stroke experimental setups, notably by (i) using clinically relevant models of stroke, (ii) including both radiological and neurological outcomes, (iii) performing long-term follow-up studies, (iv) conducting large-scale preclinical stroke trials, and (v) including stroke comorbidities in preclinical research.


Assuntos
Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Isquemia Encefálica/tratamento farmacológico , Comorbidade , Modelos Animais de Doenças , Humanos , Imunidade/imunologia , Imunidade/fisiologia , Inflamação/imunologia , Neuroproteção/imunologia , Neuroproteção/fisiologia , Avaliação de Resultados em Cuidados de Saúde , Reperfusão/métodos , Reperfusão/tendências
8.
JCI Insight ; 5(4)2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-31990687

RESUMO

Alcohol abuse is a major public health problem worldwide, causing a wide range of preventable morbidity and mortality. In this translational study, we show that heavy drinking (HD) (≥6 standard drinks/day) is independently associated with a worse outcome for ischemic stroke patients. To study the underlying mechanisms of this deleterious effect of HD, we performed an extensive analysis of the brain inflammatory responses of mice chronically exposed or not to 10% alcohol before and after ischemic stroke. Inflammatory responses were analyzed at the parenchymal, perivascular, and vascular levels by using transcriptomic, immunohistochemical, in vivo 2-photon microscopy and molecular MRI analyses. Alcohol-exposed mice show, in the absence of any other insult, a neurovascular inflammatory priming (i.e., an abnormal inflammatory status including an increase in brain perivascular macrophages [PVM]) associated with exacerbated inflammatory responses after a secondary insult (ischemic stroke or LPS challenge). Similar to our clinical data, alcohol-exposed mice showed larger ischemic lesions. We show here that PVM are key players on this aggravating effect of alcohol, since their specific depletion blocks the alcohol-induced aggravation of ischemic lesions. This study opens potentially new therapeutic avenues aiming at blocking alcohol-induced exacerbation of the neurovascular inflammatory responses triggered after ischemic stroke.


Assuntos
Consumo de Bebidas Alcoólicas , Isquemia Encefálica/induzido quimicamente , Etanol/toxicidade , AVC Isquêmico/induzido quimicamente , Macrófagos/efeitos dos fármacos , Vasculite/induzido quimicamente , Animais , Biomarcadores/metabolismo , Vasos Sanguíneos/citologia , Feminino , Humanos , Inflamação/metabolismo , Masculino , Camundongos
9.
Transl Stroke Res ; 11(3): 481-495, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31522409

RESUMO

The poor clinical relevance of experimental models of stroke contributes to the translational failure between preclinical and clinical studies testing anti-inflammatory molecules for ischemic stroke. Here, we (i) describe the time course of inflammatory responses triggered by a thromboembolic model of ischemic stroke and (ii) we examine the efficacy of two clinically tested anti-inflammatory drugs: Minocycline or anti-CD49d antibodies (tested in stroke patients as Natalizumab) administered early (1 h) or late (48 h) after stroke onset. Radiological (lesion volume) and neurological (grip test) outcomes were evaluated at 24 h and 5 days after stroke. Immune cell responses peaked 48 h after stroke onset. Myeloid cells (microglia/macrophages, dendritic cells, and neutrophils) were already increased 24 h after stroke onset, peaked at 48 h, and remained increased-although to a lesser extent-5 days after stroke onset. CD8+ and CD4+ T-lymphocytes infiltrated the ipsilateral hemisphere later on (only from 48 h). These responses occurred together with a progressive blood-brain barrier leakage at the lesion site, starting 24 h after stroke onset. Lesion volume was maximal 24-48 h after stroke onset. Minocycline reduced both lesion volume and neurological deficit only when administered early after stroke onset. The blockade of leukocyte infiltration by anti-CD49d had no impact on lesion volume or long-term neurological deficit, independently of the timing of treatment. Our data are in accordance with the results of previous clinical reports on the use of Minocycline and Natalizumab on ischemic stroke. We thus propose the use of this clinically relevant model of thromboembolic stroke with recanalization for future testing of anti-inflammatory strategies for stroke.


Assuntos
Anti-Inflamatórios/administração & dosagem , Isquemia Encefálica/imunologia , AVC Isquêmico/imunologia , Minociclina/administração & dosagem , Natalizumab/administração & dosagem , Traumatismo por Reperfusão/imunologia , Tromboembolia/imunologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Isquemia Encefálica/etiologia , Modelos Animais de Doenças , AVC Isquêmico/etiologia , Masculino , Camundongos , Traumatismo por Reperfusão/etiologia , Tromboembolia/complicações
10.
Ther Adv Neurol Disord ; 11: 1756286418789854, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083232

RESUMO

So far, intravenous tissue-type plasminogen activator (tPA) and mechanical removal of arterial blood clot (thrombectomy) are the only available treatments for acute ischemic stroke. However, the short therapeutic window and the lack of specialized stroke unit care make the overall availability of both treatments limited. Additional agents to combine with tPA administration or thrombectomy to enhance efficacy and improve outcomes associated with stroke are needed. Stroke-induced inflammatory processes are a response to the tissue damage due to the absence of blood supply but have been proposed also as key contributors to all the stages of the ischemic stroke pathophysiology. Despite promising results in experimental studies, inflammation-modulating treatments have not yet been translated successfully into the clinical setting. This review will (a) describe the timing of the stroke immune pathophysiology; (b) detail the immune responses to stroke sift-through cell type; and

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...